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A data flow language above the level of a traditional high level language is presented for the purpose of 

adapting programs written in a conventional programming language to a parallel e n h m e n t  A program 
b 

written in EASY-FLOW is a set of subprogram calls as units, structllfed by iteration, branching, and 

distribution constructs. The sequencing of execution within these structures is dictated by the data 

dependencies between units. 

INTRODUCTION 

Recognition of the increases in computation s p e d  offered by a multiplicity of processing elements, 

accompanied by the steady decline of the cost of a single processing element, has prompted the design of 

many multiprocessor architecturrs. The problems of synchronization and communication bekeen multiple 

processing elements have been addressed satisfactorily to the point that several commercial multiprocessor 

systems arc available at the advertised level of the "minisupercomputer" and "personal supercomputer" 

19,121. The maja  problems that remain relate u) programming the multiprocesscps efficiently PI. A 

solution to the parallel software problem must pmvide for (1) the determination of potential parallelism in 

programs, (2) partitioning the programs, and (3) scheduling the program partitions to execute in a 
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DATA FLOW APPROACH TO PROGRAMMING 

The data flow schema of program execution offers a simple solution to the software problem [21. The 

data flow model of a computation consists of a graph in which nodes represent operations and directed 

edges represent data dependency relationships. Tokens representing data values travel on the edges, each 

between the node from which it was output and the node to which it is input. A node is enabled for 

execution when a token has arrived on each of its input edges. Performing the operation consists of 

consuming the input token on each input edge and producing output tokens, one on each of the outgoing 

edges, as a result of the computation. The computations associated with the nodes axe assumed to be low- 

level, binary operations. , 
. 

The sequence of node executions is derermined solely by data availability. No program counter is 

required. Nodes that are not connected by paths in the graph may execute overlapping in time. 

Concurrency is determined by default, i.e. by the lack of data dependencies between any two nodes. All 

potential concurrency, down to the operation level, is exposed. Due to the functional relationship between 

a result produced by an operation and the comsponding operands,the data flow model may be considered 

to belong to the class of funcuon~ pmgramming models [IO], with all of the attendant advantages. 
I- - 

u .+ -- 
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The data flow model of corn, ‘e- hers assistance in meeting all three software requirements for 

multiprocessor machines. The maximum amount of potential parallelism is expressed in the data flow 

graph, the program partitioning problem becomes a graph partitioning problem. and the flow of data 

provides the automatic scheduling of operations. 

Despite the attractiveness of the data flow approach to parallel programming, the implementation on 

many contemporary multiprocessor architectures poses a major problem. Ironically, it is due to an 

acknowledged major asset of data flow--the vast amount of parallelism exposed. The large number of 

potentially parallel operations can cause a large amount of ovehead due to the communicating of 

operands/mults between processing elements. Researchers encountering this problem have resorted to the 

partitioning and compaction of portions of a data flow graph into sequentially executable modules to be run 

on one processing element [6,13]. The complexity of the task of determining optimal or near optimal 

partitionings has been documented (141. This topdown, then bottom up, two step procedure-determining 
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the data dependencies at the operation level and then combining operations into sequential modules-- 

represents a large expenditure of effort. This can be alleviated by the large-grained data flow approach [4] 

in which the data dependencies are determined at the subprogram level instead of at the operation level. 

DATA FLOW PROGRAMMING 

The two major approaches to the determination of data dependencies are to use existing, sequential 

languages, or to develop a new language for the expression of data dependencies. The former approach 

requires a parallelizing compiler to automatically detect the data dependencies between operations. The 

obvious advantages are that the rerrainiqiof conventional language programmers would be unnecessary 

and the magnitudes of existing sequential software would still be usable. Much research effort has been 

expended in this direction with some encouraging results, but many conventional language constructs defy 

accurate analysis for data dependency information [71. 

A parallel language may be designed to include explicit parallel constructs so that the programmer is 

conscious of the parallelism being expressed, for example: vector operations. In contrast, a new language 

may provide for the implicit expression of parallelism, by the absence of data dependencies. Data flow 

languages such as VAL [l 11, ID PI, and LUCID[lS] use this approach. 

A VERY HIGH-LEVEL DATA FLOW LANGUAGE 

The object of this report, the very high-level data flow programming language, EASY-FLOW, is the 

result of applying a composite of these approaches to the development of parallel software. The goals of 

the language design project are: (1) to develop a language that would require very little retraining of 

conventional language programmen, (2) to provide for the continued use of the magniarde of software in 

existence with only minor modifications, and (3) to expose potential parallelism both implicitly and 

explicitly, at the large-grained level or below (referred to as "variable resolution [8]"). 

Using EASY-FLOW, a program is specified as a hierarchy of units. Each unit may be made up of a 

s u b s a u c m  of units, a reference to an extanal unit, or be atomic. An atomic unit is a call to a 

subprogram, procedurr, or function aprrssed in a conventional, high-level language. It is assumed that 



. 
the high-level language of the atomic units will be one of the more traditional high-level languages such as 

FORTRAN, Pascal, C. 

EASY-FLOW defines a unit by specifying subunits (if any) and the relations between them. The 

relationships between units are determined from the data dependencies deduced from the lists of "input 

values" and "output values" associated with each unit (the input and output lists associated with the highest 

level unit, Le. the program unit, lndicate values used in inputloutput operations with the external 

environment). The "single assignment rule[l]," important in determining true data dependencies, is 

enforced with each name representing a unique value or data structure. As a consequence of this rule, no 

name may appear in both the "input" lis; dnd the "output" list of any given unit or in more than one output 

list, with the exception of the branching construct "Reassignment" is allowed only as part of the iteration 

construct. 

EASY-FLOW allows the specification of fimctionaYdata flow programming in a procedural context. 

Three language constructs offer the minimal set nquired to p v i Q  for the flow of control: sequence, 

branch, loop [SI. They are the SUBPROGRAM call, the IF-THEN-USE, and the ITER (for iterate), 

respectively. An additional construct, DISTRIBUTE, offers an explicit notation for parallelism The 

calculation of values and the assignment of those values to variables may take place only in a 

SUBPROGRAM call. 

The single assignment rule is enforced, as previously stated, by not allowing the same name to appear in 

both the input list and the output list of the same unit In addition to this, each call to a subprogram is 

enclosed within an envelope (the INnrouTOF pair) that allows the passing of paramem while shielding 

the variable in the unit from reassignment through rearming parameter values. Global variables are 

prohibited since their values may be changed as the result of subprogram calls. 

TAKING ADVANTAGE OF PARALLELISM 

The unit, IF-THEN-ELSE, lTER. andDISTRIBUTE constructs provide a structure within which one or 

more units may be placed. Multiple units appearing within a structure are termed a unit set A data flow 

graph is constructed by the EkSY -FLOW language processor from the data dependencies determined from 
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the input and output lists of the units within a unit set. An edge between two units is established wherever 

a data value name appears in the input list of one unit and the output list of the other. Implicit parallelism 

may be found by examining the data flow graph. The nodes in the graph that are not connected by paths 

may be scheduled to be executed overlapping in time. 

The example EASY-FLOW program in Figure 1 calculates the maximum of the values of the two 

functions, f and g at a point X. The program is named MAX - TWO and four names for data values are 

declared having type real. The program consists of one unit, called MAIN, with one input value, X, and 

one output value, RESULT'. The body of the MAIN unit is a unit set consisting of three units, each having 

a call to a subprogram as its body, far caicnlating the functions f o ,  g(X), and max(f(X),g(X)). Since the 

stated data dependencies between units detnmine the sequence of execution, these thne units may appear 

in any order. The data flow graph reprrsenting this calculation is shown in Figure 2. Potential parallelism 

is seen to exist between the calculations of f(X) and g o .  A subprogram written in a conventional 
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language must be provided for each subprogram called from the EASY-FLOW program. In this example 

h e  subprograms are required: F, G, and MAX in order to calculate f(x), g(x), and max(f(x),g(x)), 

respectively. 

Figure 3 gives an EASY-FLOW program for performing the calculation of MAXTWO on several 

values of X. The ITER statement provides for the looping and changing of the value of the index, I, over 

the array X. As a way of introducing the IF-THEN-ELSE statement, a zero value is produced as the result 

of an X value less than zero. Subprograms B1 and B2 must be provided in a conventional language to 

return boolean values as the result of tests for I less than ar equal to 10 and XO greater than or equal to 

0.0, respectively. The program in F i g w  4, W O P A R ,  performs the same calculation, 

making use of the distribute wnsauct to explicitly state the parallelism in independently processing all 

elements of the X array. 
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PROGRAMMING IN EASY-FLOW 

EASY-FLOW may be used for writing new programs or for modifying existing programs for the 

purpose of producing parallel software. The hierarchical nature of the language assists in topdown 

program design. Each unit may have a substructure consisting of a unit set. At the lowest level, 

subprograms written in a conventional programming language must be supplied. .These subprograms will 

perform all  programming opedons not included in EASY-FLDW and wil l  typically include assignment 

statements, arithmetic expressions, boolean expressions, and operations on data structures. Since data 

dependencies between units an obstacl? to parallelism, designing separate units to operate on data 

separately promotes pardelism 
b 

Existing programs may be modified in a top down fashion with the main program being rewritten in 

EASY-FLXIW as a set of calls to the subprograms. Additional subprograms at levels below the main 

program may be rewritten into EASY-FLOW with the degree to which this is done determining the 9 

amounts of pardelism to be made available, Le. only the parts of the program written in EASY-FLOW 

will offer parallelism; all other parts will zcmain to be executed sequentially. Thus, the amount of 

parallelism exposed is Propamonal to rhe amount of effort expended in rewriting m EASY -FLOW. 

The EASY-FLOW approach to large-grained data flow Programming differs from previous efforts [4] 

primarily by the absence of the nquirement that the programmer adhere to a graph model. Programs are 

specified in the standard textual fashion and, with the exception of the DISTRIBUTE construct, do not 

indicate any explicit parallelism 

THE EASY-FLOW LANGUAGE PROCESSING SYSTEM 

The major task of a compiler for EASY-FLOW is to determine the data flow graph for each unit set 

encountered in a program. The code produced by a compiler for EASY-FLOW is dependent upon the 

parallel nature of the target machine. In the case of a uniprocessor, completely sequential code is produced 

for the entire program. This may be done by performing a topological sort on the nodes in the data flow 

graph to determine an appropriate, although not necessarily unique, unit execution sequence. 
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In the case of a multiprocessor system. the data flow graphs generated offer a guide to the separation 

and distribution of units. Once program units have been assigned to processing elements, execution may 

begin with the communication of data values between units by whatever means available on the target 

machine. One of the parallel architectures being examined in this project is the Intel iPSC* * Concurrent 

Computer. Current operating system software supports individual high-level language programs on each 

processing element, with communications b e e n  programs taking place through message passing. 

Program units assigned to individual processing elements arc augmented with statements to facilitate the 

receipt of input data (operands) and to cause the results to be passed along as outgoing messages. 
b 

Additional software exists to check @e subprograms written in the conventional languages for potential 

violations to the single assignment rule. Subprograms are processed by a "sanitizing" program to remove 

references to global variables and to make note of name equivalencing statements (examples: COMMON 

and EQUIVALENCE statements in FORTRAN, respectively). 

CONCLUSIONS 

A new data flow language, EASY-FLOW, has been presented with the main goal of easing the 

transition from traditional high-level language programming to programming in languages that promote the 

production of parallel software for contemporary multiprocessor computers. Although the concept is 

(perhaps deceptively) attractive in its simplicity, it remains to be seen if it is genuinely easy for traditional 

programmers to use and if sufficiently efficient implementations result. 

Tbe intent of the language is to offer a simple structure for the determination of parallelism at a high- 

level, Le. large-grained parallelism. However, due to its hierarchical nature, any level granularity may be 

achieved, down to the operation level in one assignment statement It is not expected that a programmer 

using EASY-FLOW will carry the granularity down to the point where a subprogram contains only one 

assignment statement, but that capability exists. Programs specified in a relatively fine-grained fashion 

may have selected units above the atomic level processed to produce sequential code when the architecture 

of the target machine dictates that the granularity of the program is too fine to permit an efficient 

** iPSC is a registered uademark of Intel CorpOration. 
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implementation. The automatic determination of optimal program granularity is a useful language 

processing system extension and continues to be an open area of research. 

ACKNOWLEDGEMENT 

The following people are gratefully acknowledged for their impcatant contributions this project 

Mary Lou Dorf and Shelly Hancock, both of The Univasicy of Toledo, and Jim Kiraly of the NASA Lewis 

Research Center. 

MAXTWO : 
' b  

declare : real X, FX,GX, RC~ULT 

unit MAIN : 
input: X 

unit C U C F  : 
into: X => X 
subprogram F (X, PX) 
0utof:FX -> FX 

endunit CALCF: 

unit CALCG : 
into: X -> X 
subprogram G (X, GX) 
outof:GX -> GX 

endunit CALCG 

unit FINDMAX : 
into: FX => FX 

GX => GX 
subprogram MAX (FX, GX, RESULT) 
outof:RESULT => RESULT 

endunit FINDMAX 

output : RESULT 

endunit MAIN 

Fig. 1 EASY-FLOW program to calculate the maximum 
value of the two functions f and g at point x. 

Fig. 2 A data flow graph for MAx?wO. 



MANYMAXTWO : 

declare: real X(10) ,FX,GX,RESULT(lO) 
integer 1,J 
boolean T1, T2 

unit MAIN: 
input: X 
unit INITIALIZE: 
into: 
subprogram INIT (I 1 
outof: I -> I 

endunit INITIALIZE 
unit LOOP : 
input I, X 
iter into: I => I 

subprogram B1 (I ,TI 
outof :T => T1 ' 

do 
unit CHECK: 
input: X,I 
if into: X(I) => X 

subprogram B2 (X, T) 
outof:T -> T2 

then 
unit CALCF : 
into: X(1) -> X 
subprogram F (X, FX) I 
0utof:FX -> FX 

endunit CALCF 
unit CALCG : 
into: X(1) -> X 
subprogram G (X, GX) 
outof:GX => GX 

endunit CALCG 
unit FINDMAX: 
into: FX => FX 

GX -> GX 
I -> I 

subprogram MAX (FX, GX, I, RESULT) 
outof :RESULT => RESULT 

endunit FINDMAX 

unit ZERO : 
else 

into: I => I 
subprogram ZERO (1,RESULT) 
outof :RESULT -> RESULT 

endunit ZERO 
output: RESULT 

endunit CHECK 



unit INCREMENT : 
into: I => I 
subprogram INCR(1) 
outof :I => J 

endunit INCREMENT 
reassign 

J => I 
output: RESULT 

endunit LOOP 
output : RESULT 

endunit MAIN 

Fig. 3 EASY-FLOW program to calculate the maximum 
value of the two functions f and g at 10 
positive x points. The value of zero is 
returned i f x  is less than or equal to 0. 

b 

MANYMAXTWOPAR : # 

declare: real X(10) ,FX,GX,RESULT(lO) 
integer I,J 
boolean T 

unit MAIN : 
input: X 
distribute I = 1 .. 10 

unit CHECK: 
input: X,I 

i f  into: X ( 1 )  
subprogram 
outof:T => 

then 
unit CALCF : 
into: X(I) 
subprogram 
0utof:FX => FX 

endunit CALCF 
unit CALCG : 

into: X ( 1 )  => X 
subprogram G (X, GX) 
outof:GX => GX 

endunit CALCG 
unit FINDMAX: 

into: FX => FX 
GX => GX 
I -> I 

subprogram MAX (FX, GX, I, RESULT) 
outof:RESULT => RESULT 

enduni t F INDMAX 

unit ZERO : 
else 

into: I => I 
subprogram ZERO (I, RESULT) 
outof:RESULT => RESULT 

enduni t ZERO 
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output :  RESULT 
endun i t  CHECK 
ou tpu t :  RESULT 

endun i t  MAIN 

Fig. 4 Program M-0 with explicit parallelism. 
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